Article 6221

Title of the article

Verification of the acoustic path mathematical model of the ultrasonic method for measuring distances to a heated vertical plate in conditions of natural convection 

Authors

Aleksandra V. Voronina, Postgraduate student, senior lecturer, sub-department of nuclear reactors and materials, Dimitrovgrad Engineering and Technological Institute – branch of National Research Nuclear University MEPhI (294 Kuiibysheva street, Dimitrovgrad, Ulyanovsk region, Russia), E-mail: AVVoronina@mephi.ru
Sergey V. Pavlov, Doctor of engineering sciences, associate professor, head of the base sub-department at LLC NPF “Sosny”, Dimitrovgrad Engineering and Technological Institute – branch of National Research Nuclear University MEPhI (294 Kuiibysheva street, Dimitrovgrad, Ulyanovsk region, Russia), E-mail: pavlov@sosny.ru 

Index UDK

620.179.162 

DOI

10.21685/2072-3059-2021-2-6 

Abstract

Background. This article describes a mathematical model of the acoustic path of the ultrasonic method for measuring distances to a heated vertical plate, developed in the geometrical-acoustics approximation. Based on the model, the factors influencing the measurement of the propagation time of ultrasonic waves are identified. The purpose of the work is an evaluation of applicability of the model for the development of ultrasonic pulse echo measuring systems. Materials and methods. The model of the acoustic path is verified by comparing the numerical data with experimental obtained by the authors when modeling the effect of various factors on the measurement results of the ultrasonic method. Results and conclusions. As a result of the verification shows that the calculated data obtained using the developed model, give good agreement with experimental data. The study lead to the conclusion that the presented model can be used in the development of measuring systems based on the ultrasonic echo-pulse method. 

Key words

ultrasound method, ultrasound, model, geometric acoustics, natural convection, refraction 

Download PDF
References

1. Ermolov I.N. Teoriya i praktika ul'trazvukovogo kontrolya = Theory and practice of ultrasonic testing. Moscow: Mashinostroenie, 1981:240. (In Russ.)
2. Korolev M.V. Ekho-impul'snye tolshchinomery = Pulse and echo thickness gauges. Moscow: Mashinostroenie, 1980:114. (In Russ.)
3. Gorbatov A.A., Rudashevskiy G.E. Akusticheskie metody izmereniya rasstoyaniy i upravleniya. 2-e izd., pererab. i dop. = Acoustic distance measurement and control methods. The 2nd edition, revised and supplemented. Moscow: Energoizdat, 1981:207. (In Russ.)
4. Xu Yuanhuan, Nie Yong Distortion. Measurement for Fuel Assemblies with Ultrasonic Technique. Post-Irradiation Examination and In-Pile Measurement Techniques for Water Reactor Fuels. Vienna: IAEA, 2009. IAEA-TECDOC-CD-1635.
5. Pavlov S.V. Nerazrushayushchie ul'trazvukovye metody issledovaniy obluchennogo topliva yadernykh reaktorov = Non-destructive ultrasonic methods for studying irradiated fuel of nuclear reactors. Dimitrovgrad: OAO «GNTs NIIAR», 2013:256. (In Russ.)
6. Gapshis A.A., Kasparaytis A.Yu., Modestov M.B. [et al.]. Koordinatnye izmeritel'nye mashiny i ikh primenenie = Coordinate measuring machines and their applications. Moscow: Mashinostroenie, 1988:328. (In Russ.)
7. Voronina A.V., Pavlov S.V. Mathematical model of the acoustic path of the pulse-echo method for measuring the geometric parameters of the fuel assembly of a nuclear reactor in the approximation of geometric acoustics. Vestnik NIYaU «MIFI» = Bulletin of National Research Nuclear University MEPhI. 2020;9(3):217–225. (In Russ.). doi:10.1134/S2304487X20030104
8. Vybornov B.I. Ul'trazvukovaya defektoskopiya = Ultrasonic flaw detection. Moscow: Metallurgiya, 1985:256. (In Russ.)
9. Sverdlin G.M. Prikladnaya gidroakustika = Applied hydroacoustics. Leningrad: Sudostroenie, 1976:280. (In Russ.)
10. Pavlov S.V., Shalaginova T.M., Mikhaylov S.V., Prokudanov D.L. Issledovanie vliyaniya estestvennoy konvektsii na rezul'taty izmereniya geometricheskikh kharakteristik tvelov i teplovydelyayushchikh sborok ul'trazvukovymi metodami v usloviyakh basseynov vyderzhki: preprint = Studying the influence of natural convection on the results of measuring the geometric characteristics of fuel rods and fuel assemblies by ultrasonic methods under conditions of pool holding: preprint. Dimitrovgrad: NIIAR, 1991:28. (In Russ.)
11. Lock G.S.H., F.J. de B. Trotter Observations on the structure of a turbulent free convection boundary layer. Int. J. Heat Mass Transfer. 1968;11:1225–1232. doi:10.1016/0017-9310(68)90193-2
12. Vliet G.C., Liv C.K. An Experimental Study of Turbulent Natural Convection Boundary Layers. Journal of Heat Transfer. 1969;92:517–531. doi:10.1115/1.3580236
13. Qureshi Z.H., Gebhart V. Transition and transport in a buoyancy driven flow in water adjacent to a vertical uniform flux surface. Int. J. Heat Mass Transform. 1978;21:1467–1479. doi:10.1016/0017-9310(78)90003-0
14. Voronina A.V., Pavlov S.V. Method and program for calculating the speed of sound in water under conditions of natural convection at the surface of fuel assemblies of nuclear reactors. Vestnik natsional'nogo issledovatel'skogo yadernogo universiteta MIFI = Bulletin of National Research Nuclear University MEPhI. 2019;8(5):465–472. (In Russ.). doi:10.1134/S2304487X19050080

 

Дата создания: 20.09.2021 11:48
Дата обновления: 20.09.2021 12:15